Re-evaluation of ethylene role in Arabidopsis cauline leaf abscission induced by water stress and rewatering

Author:

Meir Shimon,Philosoph-Hadas Sonia,Salim Shoshana,Segev Adi,Riov Joseph

Abstract

ABSTRACTPatharkar and Walker (2016) reported that cauline leaf abscission in Arabidopsis is induced by a cycle of water stress and rewatering, which is regulated by the complex of INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), HAESA (HAE), and HAESA-LIKE2 (HSL2) kinases. However, they stated without presenting experimental results that ethylene is not involved in this process. Since this statement contradicts the well-established role of ethylene in organ abscission induced by a cycle of water stress and rewatering, our present study was aimed to re-evaluate the possible involvement of ethylene in this process. For this purpose, we examined the endogenous ethylene production during water stress and following rewatering, as well as the effects of exogenous ethylene and 1-methylcyclopropene (1-MCP), on cauline leaf abscission of Arabidopsis wild type. Additionally, we examined whether this stress induces cauline leaf abscission in ethylene-insensitive Arabidopsis mutants. The results of the present study demonstrated that ethylene production rates increased significantly in cauline leaves at 4 h after rewatering of stressed plants, and remained high for at least 24 h in plants water-stressed to 40 and 30% of system weight. Ethylene treatment applied to well-watered plants induced cauline leaf abscission, which was inhibited by 1-MCP. Cauline leaf abscission was also inhibited by 1-MCP applied during a cycle of water stress and rewatering. Finally, no abscission occurred in two ethylene-insensitive mutants, ein2-1 and ein2-5, following a cycle of water stress and rewatering. Taken together, these results clearly indicate that ethylene is involved in Arabidopsis cauline leaf abscission induced by water stress.One sentence summaryUnlike Patharker and Walker (2016), our results show that ethylene is involved in Arabidopsis cauline leaf abscission induced by water stress and rewatering, similar to leaf abscission in other plants.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3