Convex-PLR – Revisiting affinity predictions and virtual screening using physics-informed machine learning

Author:

Kadukova MariaORCID,Chupin VladimirORCID,Grudinin SergeiORCID

Abstract

AbstractVirtual screening is an essential part of the modern drug design pipeline, which significantly accelerates the discovery of new drug candidates. Structure-based virtual screening involves ligand conformational sampling, which is often followed by re-scoring of docking poses. A great variety of scoring functions have been designed for this purpose. The advent of structural and affinity databases and the progress in machine-learning methods have recently boosted scoring function performance. Nonetheless, the most successful scoring functions are typically designed for specific tasks or systems. All-purpose scoring functions still perform poorly on the virtual screening tests, compared to precision with which they are able to predict co-crystal binding poses. Another limitation is the low interpretability of the heuristics being used.We analyzed scoring functions’ performance in the CASF benchmarks and discovered that the vast majority of them have a strong bias towards predicting larger binding interfaces. This motivated us to develop a physical model with additional entropic terms with the aim of penalizing such a preference. We parameterized the new model using affinity and structural data, solving a classification problem followed by regression. The new model, called Convex-PLR, demonstrated high-quality results on multiple tests and a substantial improvement over its predecessor Convex-PL. Convex-PLR can be used for molecular docking together with VinaCPL, our version of AutoDock Vina, with Convex-PL integrated as a scoring function. Convex-PLR, Convex-PL, and VinaCPL are available at https://team.inria.fr/nano-d/convex-pl/.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3