Abstract
AbstractFatty acid (FA) transfer proteins extract FA from membranes and sequester their ligand to facilitate its movement through the cytosol. While detailed views of soluble protein-FA complexes are available, how FA exchange occurs at the membrane has remained unknown. Staphylococcus aureus FakB1 is a prototypical bacterial FA transfer protein that binds palmitate within a narrow, buried tunnel. Here, we determine the conformational change from this closed state to an open state that engages the phospholipid bilayer. Upon membrane binding, a dynamic loop in FakB1 that covers the FA binding site disengages and folds into an amphipathic helix. This helix inserts below the phosphate plane of the bilayer to create a diffusion channel for the FA to exchange between the protein and the membrane. The structure of the bilayer-associated conformation of FakB1 has local similarities with mammalian FA binding proteins and provides a general conceptual framework for how these proteins interact with the membrane to promote lipid transfer.
Publisher
Cold Spring Harbor Laboratory