Abstract
AbstractThe AAA+ protein KaiC is the central pacemaker for cyanobacterial circadian rhythms. Composed of two hexameric rings with tightly coupled activities, KaiC undergoes changes in autophosphorylation on its C-terminal (CII) domain that restrict binding of of clock proteins on its N-terminal (CI) domain to the evening. Here, we use cryo-electron microscopy to investigate how daytime and nighttime states of CII regulate KaiB binding to CI. We find that the CII hexamer is destabilized during the day but takes on a rigidified C2-symmetric state at night,concomitant with ring-ring compression. Residues at the CI-CII interface are required for phospho-dependent KaiB association, coupling ATPase activity on CI to cooperative KaiB recruitment. Together these studies reveal how daily changes in KaiC phosphorylation regulate cyanobacterial circadian rhythms.One-Sentence SummaryCryo-EM structures of KaiC in its day and night states reveal the structural basis for assembly of clock regulatory complexes.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献