Defining the extent of gene function using ROC curvature

Author:

Fischer StephanORCID,Gillis JesseORCID

Abstract

AbstractMachine learning in genomics plays a key role in leveraging high-throughput data, but assessing the generalizability of performance has been a persistent challenge. Here, we propose to evaluate the generalizability of gene characterizations through the shape of performance curves. We identify Functional Equivalence Classes (FECs), uniform subsets of annotated and unannotated genes that jointly drive performance, by assessing the presence of straight lines in ROC curves. FECs are widespread across modalities and methods, and can be used to evaluate the extent and context-specificity of functional annotations in a data-driven manner. For example, FECs suggest that B cell markers can be decomposed into shared primary markers (10 to 50 genes), and tissue-specific secondary markers (100 to 500□genes). In addition, FECs are compatible with a wide range of functional encodings, with marker sets spanning at most 5% of the genome and data-driven extensions of Gene Ontology sets spanning up to 40% of the genome. Simple to assess visually and statistically, the identification of FECs in performance curves paves the way for novel functional characterization and increased robustness in analysis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3