Dense Optic Nerve Head Deformation Estimated using CNN as a Structural Biomarker of Glaucoma Progression

Author:

Salehi Ali,Balasubramanian MadhusudhananORCID

Abstract

ABSTRACTPurposeTo present a new structural biomarker for detecting glaucoma progression based on structural transformation of the optic nerve head (ONH) region.MethodsA dense ONH deformation was estimated using deep learning methods namely DDCNet-Multires, FlowNet2, and FlowNet-Correlation, and legacy computational methods namely the topographic change analysis (TCA) and proper orthogonal decomposition (POD) methods using longitudinal confocal scans of the ONH for each study eye. A candidate structural biomarker of glaucoma progression in a study eye was estimated as average magnitude of flow velocities within the ONH region. The biomarker was evaluated using longitudinal confocal scans of 12 laser-treated and 12 contralateral normal eyes of 12 primates from the LSU Experimental Glaucoma Study (LEGS); and 36 progressing eyes and 21 longitudinal normal eyes from the UCSD Diagnostic Innovations in Glaucoma Study (DIGS). Area under the ROC curves (AUC) was used to assess the diagnostic accuracy of the candidate biomarker.ResultsAUROC (95% CI) for LEGS were: 0.83 (0.79, 0.88) for DDCNet-Multires; 0.83 (0.78, 0.88) for FlowNet2; 0.83 (0.78, 0.88) for FlowNet-Correlation; 0.94 (0.91, 0.97) for POD; and 0.86 (0.82, 0.91) for TCA methods. For DIGS: 0.89 (0.80, 0.97) for DDCNet-Multires; 0.82 (0.71, 0.93) for FlowNet2; 0.93 (0.86, 0.99) for FlowNet-Correlation; 0.86 (0.76, 0.96) for POD; and 0.86 (0.77, 0.95) for TCA methods. Lower diagnostic accuracy of the learning-based methods for LEG study eyes were due to image alignment errors in confocal sequences.ConclusionDeep learning methods trained to estimate generic deformation were able to detect ONH deformation from confocal images and provided a higher diagnostic accuracy when compared to the classical optical flow and legacy biomarkers of glaucoma progression. Because it is difficult to validate the estimates of dense ONH deformation in clinical population, our validation using ONH sequences under controlled experimental conditions confirms the diagnostic accuracy of the biomarkers observed in the clinical population. Performance of these deep learning methods can be further improved by fine-tuning these networks using longitudinal ONH sequences instead of training the network to be a general-purpose deformation estimator.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3