Abstract
AbstractWe find that epidemic resurgence, defined as an upswing in the effective reproduction number (R) of the contagion from subcritical to supercritical values, is fundamentally difficult to detect in real time. Inherent latencies in pathogen transmission, coupled with smaller and intrinsically noisier case incidence across periods of subcritical spread, mean that resurgence cannot be reliably detected without significant delays of the order of the generation time of the disease, even when case reporting is perfect. This belies epidemic suppression (where R falls from supercritical to subcritical values), which may be ascertained 5–10 times more rapidly due to the naturally larger incidence at which control actions are applied. We prove that these innate limits on detecting resurgence only worsen when spatial or demographic heterogeneities are incorporated. Consequently, we argue that resurgence is more effectively handled proactively, at the expense of false alarms. Responses to recrudescent infections or emerging variants of concern will more likely be timely if informed by improved syndromic surveillance systems than by optimised mathematical models of epidemic spread.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献