The RNA-binding protein DRBD18 regulates processing and export of the mRNA encoding Trypanosoma brucei RNA-binding protein 10

Author:

Tshitenge Tania Bishola,Liu Bin,Clayton Christine

Abstract

AbstractThe parasite Trypanosoma brucei grows as bloodstream forms in mammalian hosts, and as procyclic forms in tsetse flies. Trypanosome protein coding genes are arranged in polycistronic transcription units, so gene expression regulation depends heavily on post-transcriptional mechanisms. The essential RNA-binding protein RBP10 is expressed only in mammalian-infective forms, where it targets procyclic-specific mRNAs for destruction. We show that developmental regulation of RBP10 expression is mediated by the exceptionally long 7.3 Kb 3’-UTR of its mRNA. Different regulatory sequences that can independently enhance mRNA stability and translation in bloodstream forms, or destabilize and repress translation in procyclic forms, are scattered throughout the 3’-UTR. The RNA-binding protein DRBD18 is implicated in the export of a subset of mRNAs from the nucleus in procyclic forms. We confirmed that in bloodstream forms, DRBD18 copurifies the outer ring of the nuclear pore, mRNA export proteins and exon junction complex proteins. Loss of DRBD18 in bloodstream forms caused accumulation of several shortened RBP10 mRNA isoforms, with loss of longer species, but RNAi targeting the essential export factor MEX67 did not cause such changes, demonstrating specificity. Long RBP10 mRNAs accumulated in the nucleus, while shorter ones reached the cytoplasm. We suggest that DRBD18 binds to processing signals in the RBP10 3’-UTR, simultaneously preventing their use and recruiting mRNA export factors. DRBD18 depletion caused truncation of the 3’-UTRs of more than 100 other mRNAs, suggesting that it has an important role in regulating use of alternative processing sites.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3