Abstract
AbstractThe monocled cobra (Naja kaouthia) is one of the most feared snakes in Southeast Asia. It is a highly dangerous species with a potent venom deriving its toxicity predominantly from abundant long-chain α-neurotoxins. The only specific treatment for snakebite envenoming is antivenom, which is based on animal-derived polyclonal antibodies. Despite the lifesaving importance of these medicines over the past 120 years, and their ongoing role in combating snakebite disease, major limitations in safety, supply consistency, and efficacy creates a need for a new generation of improved treatments based on modern biotechnological techniques. Here, we describe the initial discovery and subsequent optimization of a recombinant human monoclonal immunoglobin G (IgG) antibody against α-cobratoxin using phage display technology. Affinity maturation of the parental antibody by light chain-shuffling resulted in an 8-fold increase in affinity, translating to a significant increase in in vitro neutralization potency and in vivo efficacy. While the parental antibody prolonged survival of mice challenged with purified α-cobratoxin, the optimized antibody prevented lethality when incubated with N. kaouthia whole venom prior to intravenous injection. This study is the first to demonstrate neutralization of whole snake venom by a single recombinant monoclonal antibody. Importantly, this suggests that for venoms whose toxicity relies on a single predominant toxin group, such as that of N. kaouthia, as little as one monoclonal antibody may be sufficient to prevent lethality, thus providing a tantalizing prospect of bringing recombinant antivenoms based on human monoclonal or oligoclonal antibodies to the clinic.One Sentence SummaryA recombinant human monoclonal immunoglobulin G antibody, discovered and optimized using in vitro methods, was demonstrated to neutralize the lethal effect of whole venom from the monocled cobra in mice via abrogation of α-neurotoxin-mediated neurotoxicity.
Publisher
Cold Spring Harbor Laboratory
Reference36 articles.
1. Renal cell carcinoma
2. ELISA Confirmation of Acute and Past Envenoming by the Monocellate Thai Cobra (Naja kaouthia);Am. J. Trop. Med. Hyg,1986
3. J. Meier , J. White , Eds., Handbook of: Clinical Toxicology of Animal Venoms and Poisons (CRC Press, Boca Raton, 1995).
4. R. O. for S.-E. Asia, W. H. Organization, Guidelines for the management of snakebites (WHO Regional Office for South-East Asia, 2016; https://apps.who.int/iris/handle/10665/249547).
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献