Nonsense-associated alternative splicing as a putative reno-protective mechanism in Pkhd1cyli/Pkhd1cyli mutant mice

Author:

Yang Chaozhe,Harafuji Naoe,Odinakachukwu Maryanne C.,Caldovic Ljubica,Boddu Ravindra,Gordish-Dressman Heather,Foreman Oded,Eicher Eva M.,Guay-Woodford Lisa M.

Abstract

AbstractAutosomal recessive polycystic kidney disease (ARPKD) is a hereditary hepato-renal fibrocystic disorder and a significant genetic cause of childhood morbidity and mortality. Mutations in the Polycystic Kidney and Hepatic Disease 1 (PKHD1) gene cause all typical forms of ARPKD. Several mouse strains carrying diverse genetically engineered disruptions in the orthologous Pkhd1 gene have been generated. The current study describes a novel spontaneous mouse recessive mutation causing a cystic liver phenotype resembling the hepato-biliary disease characteristic of human ARPKD. Here we describe mapping of the cystic liver mutation to the Pkhd1 interval on Chromosome 1 and identification of a frameshift mutation within Pkhd1 exon 48 predicted to result in premature translation termination. Mice homozygous for the new mutation, symbollzed Pkhd1cyli, lack renal pathology, consistent with previously generated Pkhd1 mouse mutants that fail to recapitulate human kidney disease. We have identified a profile of alternatively spliced Pkhd1 renal transcripts that are distinct in normal versus mutant mice. The Pkhd1 transcript profile in mutant kidneys is consistent with predicted outcomes of nonsense-associated alternative splicing (NAS) and nonsense mediated decay (NMD). Overall levels of Pkhd1 transcripts in mutant mouse kidneys were reduced compared to kidneys of normal mice, and Pkhd1 encoded protein in mutant kidneys was undetectable by immunoblotting. We suggest that in Pkhd1cyli/Pkhd1cyli(cyli) mice, mutation-promoted Pkhd1 alternative splicing in the kidney yields transcripts encoding low-abundance protein isoforms lacking exon 48 encoded amino acid sequences that are sufficiently functional so as to attenuate expression of a renal cystic disease phenotype.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3