Laryngeal and swallow dysregulation following acute cervical spinal cord injury

Author:

Pitts TeresaORCID,Iceman Kimberly E.ORCID,Huff AlyssaORCID,Musselwhite M. NicholasORCID,Frazure Michael L.ORCID,Young Kellyanna C.ORCID,Greene Clinton L.ORCID,Howland Dena R.ORCID

Abstract

AbstractProper function of the larynx is vital to airway protection, including swallow. While the swallow reflex is controlled by the brainstem, patients with cervical spinal cord injuries (cSCI) are likely at increased risk of disordered swallow (dysphagia) and pneumonia, and the underlying mechanisms are unknown. We aimed to determine if acute spinal cord injury would disrupt swallow function in animal models. We hypothesized that 1) loss of descending efferent information to the diaphragm would affect swallow and breathing differently, and that 2) loss of ascending spinal afferent information would alter central swallow regulation to change motor drive to the upper airway. We recorded amplitudes of laryngeal and inspiratory muscle electromyograms (EMGs), submental and pharyngeal muscle EMGs, and cardiorespiratory measures in freely breathing pentobarbital-anesthetized cats and rats. First, we assessed the effect of a lateral hemisection at the second cervical level (C2) in cats during breathing. Posterior cricoarytenoid (laryngeal abductor) EMG activity during inspiration increased nearly two-fold, indicating that inspiratory laryngeal drive increased following cSCI. Ipsilateral to the injury, the crural diaphragm EMG was significantly reduced during breathing (62 ± 25 percent change post-injury), but no animal had a complete termination of all activity; 75% of animals had an increase in contralateral diaphragm recruitment after cSCI, but this did not reach significance. Next, we assessed the effect of C2 lateral hemisection in cats during swallow. The thyroarytenoid (laryngeal adductor) and thyropharyngeus (pharyngeal constrictor) both increased EMG activity during swallow, indicating increased upper airway drive during swallow following cSCI. There was no change in the number of swallows stimulated per trial. We also found that diaphragm activity during swallow (schluckatmung) was bilaterally suppressed after lateral C2 hemisection, which was unexpected because this injury did not suppress contralateral diaphragm activity during breathing. Swallow-breathing coordination was also affected by cSCI, with more post-injury swallows occurring during early expiration. Finally, because we wanted to determine if the chest wall is a major source of feedback for laryngeal regulation, we performed T1 total transections in rats. As in the cat C2 lateral hemisection, a similar increase in inspiratory laryngeal activity (posterior cricoarytenoid) was the first feature noted after rat T1 complete spinal cord transection. In contrast to the cat C2 lateral hemisection, diaphragmatic respiratory drive increased after T1 transection in every rat (215 ± 63 percent change), and this effect was significant. Overall, we found that spinal cord injury alters laryngeal drive during swallow and breathing, and alters swallow-related diaphragm activity. Our results show behavior-specific effects, suggesting that swallow may be more affected than breathing is by cSCI, and emphasizing the need for additional studies on laryngeal function during breathing and swallow after spinal cord injury.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3