Ratiometric RNA labeling allows dynamic multiplexed analysis of gene circuits in single cells

Author:

Xu Shuhui,Li Kai,Ma Liang,Zhang Jianhan,Yoon Shinae,Elowitz Michael B.ORCID,Lin YihanORCID

Abstract

ABSTRACTBiological processes are highly dynamic and are regulated by genes that connect with one and another, forming regulatory circuits and networks. Understanding how gene regulatory circuits operate dynamically requires monitoring the expression of multiple genes in the same cell. However, it is limited by the relatively few distinguishable fluorescent proteins. Here, we developed a multiplexed real-time transcriptional imaging method based on two RNA stem-loop binding proteins, and employed it to analyze the temporal dynamics of synthetic gene circuits. By incorporating different ratios of MS2 and PP7 stem-loops, we were able to monitor the real-time nascent transcriptional activities of up to five genes in the same cell using only two fluorescent proteins. Applying this multiplexing capability to synthetic linear or branched gene regulatory cascades revealed that propagation of transcriptional dynamics is enhanced by non-stationary dynamics and is dictated by the slowest regulatory branch in the presence of combinatorial regulation. Mathematical modeling provided further insight into temporal multi-gene interactions and helped to understand potential challenges in regulatory inference using snapshot single-cell data. Ratiometric multiplexing should scale exponentially with additional labelling channels, providing a way to track the dynamics of larger circuits.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3