Comprehensive simulation and interpretation of single nucleotide substitutions in GJB2 reveals the genetic and phenotypic landscape of GJB2-related hearing loss

Author:

Xiang JialeORCID,Sun Xiangzhong,Song Nana,Chen Lisha,Ramaswamy SathishkumarORCID,Tayoun Ahmad AbouORCID,Peng ZhiyuORCID

Abstract

AbstractGenetic variants in the GJB2 gene are the most frequent causes of congenital and childhood hearing loss worldwide. In addition to nonsyndromic hearing loss, GJB2 pathogenic variants are also correlated with syndromic phenotypes, showing high genetic and phenotypic heterogeneity. To comprehensively delineate the genetic and phenotypic landscape of GJB2 variants, we interpreted and manually curated all the 2043 possible single-nucleotide substitution (SNS) coding variants in this gene following the hearing loss-specific ACMG/AMP guidelines. As a result, 61 (3.0%), 188 (9.2%), 1487 (72.8%), 301 (14.7%) and 6 (0.3%) variants were classified as pathogenic, likely pathogenic, variant of uncertain significance, likely benign and benign, respectively. Interestingly, 54% (84/156) of pathogenic/likely pathogenic missense variants were not recorded in ClinVar. Further analysis showed that the second transmembrane domain (TM2) and the 310 helix are highly enriched for pathogenic missense variants. The N-terminal tail and the extracellular loop (E1) showed a high density of variants that are associated with syndromic or dominant nonsyndromic hearing loss. On the other hand, the intracellular loops (CL and CT) were extremely tolerant to variation. Based on this new information, we propose refinements of the guidelines for variant interpretation in GJB2. In summary, our study interpreted all possible SNS variants in the coding region of the GJB2 gene, characterized novel clinically significant (N = 249) and benign or likely benign (N = 307) in this gene, and revealed significant genotype-phenotype correlations at this common hearing loss locus. The interpretation of GJB2 SNS variants in the coding region provides a prototype for genes with similarly high genetic and phenotypic heterogeneity.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3