The Report on China-Spain Joint Clinical Testing for Rapid COVID-19 Risk Screening by Eye-region Manifestations

Author:

Fu Yanwei,Li Feng,Fustel Paula boned,Zhao Lei,Jia Lijie,Zheng Haojie,Sun Qiang,Rong Shisong,Tang Haicheng,Xue Xiangyang,Yang Li,Li Hong,Xie Jiao,Wang Wenxuan,Li Yuan,Wang Wei,Pei Yantao,Wang Jianmin,Wu Xiuqi,Zheng Yanhua,Tian Hongxia,Gu Mengwei

Abstract

AbstractBackgroundThe worldwide surge in coronavirus cases has led to the COVID-19 testing demand surge. Rapid, accurate, and cost-effective COVID-19 screening tests working at a population level are in imperative demand globally.MethodsBased on the eye symptoms of COVID-19, we developed and tested a COVID-19 rapid prescreening model using the eye-region images captured in China and Spain with cellphone cameras. The convolutional neural networks (CNNs)-based model was trained on these eye images to complete binary classification task of identifying the COVID-19 cases. The performance was measured using area under receiver-operating-characteristic curve (AUC), sensitivity, specificity, accuracy, and F1. The application programming interface was open access.FindingsThe multicenter study included 2436 pictures corresponding to 657 subjects (155 COVID-19 infection, 23·6%) in development dataset (train and validation) and 2138 pictures corresponding to 478 subjects (64 COVID-19 infections, 13·4%) in test dataset. The image-level performance of COVID-19 prescreening model in the China-Spain multicenter study achieved an AUC of 0·913 (95% CI, 0·898-0·927), with a sensitivity of 0·695 (95% CI, 0·643-0·748), a specificity of 0·904 (95% CI, 0·891-0·919), an accuracy of 0·875(0·861-0·889), and a F1 of 0·611(0·568-0·655).InterpretationThe CNN-based model for COVID-19 rapid prescreening has reliable specificity and sensitivity. This system provides a low-cost, fully self-performed, non-invasive, real-time feedback solution for continuous surveillance and large-scale rapid prescreening for COVID-19.FundingThis project is supported by Aimomics (Shanghai) Intelligent

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3