Nanomolar, noncovalent antagonism of hedgehog cholesterolysis: exception to the “irreversibility rule” for protein autoprocessing inhibition

Author:

Wagner Andrew G,Stagnitta Robert T,Xu Zihan,Pezzullo John L,Kandel Nabin,Giner José-Luis,Covey Douglas F,Wang Chunyu,Callahan Brian P

Abstract

ABSTRACTHedgehog (Hh) signaling ligands undergo carboxy terminal sterylation through specialized autoprocessing, called cholesterolysis. Sterylation is brought about intramolecularly in a single turn-over by an enzymatic domain, called HhC. HhC is found in precursor Hh proteins only. Through cholesterolysis, HhC is cleaved from the precursor. Attempts to identify molecules that inhibit intramolecular cleavage/sterylation activity of HhC have resulted in antagonists that bind HhC irreversibly through covalent mechanisms, as is commonplace for protein autoprocessing inhibitors. Here we report an exception to the “irreversibility rule” for protein autoprocessing inhibition. Using a FRET-based activity assay for HhC, we screened a focused library of sterol-like analogs for HhC cholesterolysis inhibitors. We identified and validated four structurally related noncovalent inhibitors, which were then used for SAR studies. The most effective derivative, tBT-HBT, binds HhC reversibly with an IC50 of 300 nM. An allosteric binding site for tBT-HBT, encompassing interactions from the two subdomains of HhC, is suggested by kinetic analysis, mutagenesis studies, and photoaffinity labeling. A striking resemblance is found between the inhibitors described here and a family of noncovalent, allosteric activators of HhC, which we described previously. The inhibitor/activator duality appears to be mediated by the same allosteric site, which displays sensitivity to subtle differences in the structure of a heterocycle substituent on the effector molecule.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3