Assessing the optimal frequency of early parasitoid releases in an apple orchard to control Dysaphis plantaginea: a proof of concept study

Author:

Ferrais L.,Tougeron K.ORCID,Gardin P.,Hance T.

Abstract

AbstractAlternative measures to pesticides to control the rosy apple aphid Dysaphis plantaginea are being developed. Naturally occurring predators and parasitoids often fail to reduce aphid abundance below the economic threshold in orchards, because they are active too late after the aphid first infestation. We tested the efficiency of mass release of two parasitoid species, Aphidius matricariae and Ephedrus cerasicola, early in the season to match the presence of aphid fundatrix (sensitive stages). In this trial focusing on an organic apple orchard, three releases were done either every week or every two weeks to test the effect of the release frequency, during two consecutive years. The number of aphid colonies and aphid number per tree were monitored from late March to late May. Degree-days necessary for parasitoid emergence in the field after release were calculated. We show that a sufficient level of aphid control by parasitoids is reached during the first month of the survey, but control mostly fails during the second part of the monitoring session, for both release treatments, and compared to the neem oil control treatment. The relative effects of release frequencies were different between years probably because of interannual differences in aphid population dynamics and initial infestation in orchards. The field survey and the degree-day model suggest that parasitoid releases, at either frequency, are promising candidates for biological control of the rosy aphid, although the method still needs proper calibration. This conclusion needs to be reinforced by repeating the study in more orchards, but our case study lays the first empirical basis that will help to develop future control methods of aphids by parasitoid releases in apple orchards. We argue that releases should be done one to two weeks before first aphid detection to account for long development times of parasitoids at relatively low temperatures.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3