Improved Docking of Protein Models by a Combination of Alphafold2 and ClusPro

Author:

Ghani Usman,Desta Israel,Jindal Akhil,Khan Omeir,Jones George,Kotelnikov Sergey,Padhorny DzmitryORCID,Vajda SandorORCID,Kozakov DimaORCID

Abstract

AbstractIt has been demonstrated earlier that the neural network based program AlphaFold2 can be used to dock proteins given the two sequences separated by a gap as the input. The protocol presented here combines AlphaFold2 with the physics based docking program ClusPro. The monomers of the model generated by AlphaFold2 are separated, re-docked using ClusPro, and the resulting 10 models are refined by AlphaFold2. Finally, the five original AlphaFold2 models are added to the 10 AlphaFold2 refined ClusPro models, and the 15 models are ranked by their predicted aligned error (PAE) values obtained by AlphaFold2. The protocol is applied to two benchmark sets of complexes, the first based on the established protein-protein docking benchmark, and the second consisting of only structures released after May 2018, the cut-off date for training AlphaFold2. It is shown that the quality of the initial AlphaFold2 models improves with each additional step of the protocol. In particular, adding the AlphaFold2 refined ClusPro models to the AlphaFold2 models increases the success rate by 23% in the top 5 predictions, whereas considering the 10 models obtained by the combined protocol increases the success rate to close to 40%. The improvement is similar for the second benchmark that includes only complexes distinct from the proteins used for training the neural network.

Publisher

Cold Spring Harbor Laboratory

Reference17 articles.

1. High-accuracy protein structure prediction in CASP14;Proteins,2021

2. Highly accurate protein structure prediction with AlphaFold;Nature,2021

3. The breakthrough in protein structure prediction;Biochemical Journal,2021

4. Ozden B , Kryshtafovych A , Karaca E. Assessment of the CASP14 Assembly Predictions. Proteins: Structure, Function, and Bioinformatics. 2021.

5. Egbert M , Ghani U , Ashizawa R , Kotelnikov S , Nguyen T , Desta I , et al. Assessing the binding properties of CASP14 targets and models. Proteins: Structure, Function, and Bioinformatics. 2021.

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3