Identification and validation of putative target genes regulated by miR-34 in cervical cancer

Author:

Venkatesan Nalini,Xavier Ashley,Sindhu K.J.,Sinha Himanshu,Devarajan Karunagaran

Abstract

AbstractThe emergence of large-scale transcriptomic data provides the opportunity for identifying novel putative targets of microRNAs (miRNAs). In this study, we followed a computational pipeline to predict the candidate gene targets of the miR-34 family. This approach integrates the expressions of miR-34 with genes of heterogeneous primary cervical epithelial squamous cell carcinomas (CESC). Integration of miR-34b and epithelial-mesenchymal transition (EMT) regulated genes has also been focussed, EMT being a reversible process that fuels cancer metastasis. An in-silico approach involving three processes was carried out with CESC datasets of the cancer atlas genome (TCGA), which includes correlation analysis, target prediction database lookup, functional enrichment, network analysis, survival analysis, and EMT score derivation. The results indicate that the miR-34 family may regulate the candidate genes of the mTOR pathway, cell cycle (CCND2) and cell adhesion functions (FZD4). Further, the study reveals the possible regulation of EMT signature genes, namely BMP7, CAV1 and ID2by miR-34b. Further, these transcriptomic signatures were validated in a subset of CESC from the South Asian Indian population (n = 10) and in non-cancerous cervical tissues (n = 5). Upon stably expressing miR-34b in cervical cancer cells (C33A and HeLa), we found repression of these candidate genes and a low negative correlation (r2 = -0.07) between miR-34b and EMT score indicating FN1 as its putative target. Together, these studies revealed the potential targets of the miR-34 family, especially miR-34b, with the hope that they would emerge as potential biomarkers and/or promising therapeutic targets in CESC.Brief DescriptionA combined analysis of miR-34 and gene expression in heterogeneous primary CESC, along with the integration of miR-34b and EMT regulated genes, was used to predict the candidate gene targets of the miR-34 family. The results show that the miR-34 family may regulate the mTOR pathway, cell cycle, and cell adhesion functions. Further, we showed that EMT signature genes (BMP7, CAV1, ID2, FN1) were regulated by miR-34b in CESC and cervical cancer cells.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3