Sodium Thiosulfate acts as an H2S mimetic to prevent intimal hyperplasia via inhibition of tubulin polymerization

Author:

Macabrey Diane,Longchamp AlbanORCID,MacArthur Michael R.ORCID,Lambelet Martine,Urfer Severine,Corpataux Jean-Marc,Deglise SebastienORCID,Allagnat FlorentORCID

Abstract

AbstractBackgroundIntimal hyperplasia (IH) remains a major limitation in the long-term success of any type of revascularization. IH is due to vascular smooth muscle cell (VSMC) dedifferentiation, proliferation and migration. The gasotransmitter Hydrogen Sulfide (H2S) inhibits IH in pre-clinical models. However, there is currently no clinically approved H2S donor. Here we used sodium thiosulfate (STS), a clinically-approved source of sulfur, to limit IH.MethodsHypercholesterolemic LDLR deleted (LDLR-/-), WT or CSE-/- male mice randomly treated with 4g/L STS in the water bottle were submitted to focal carotid artery stenosis to induce IH. Human vein segments were maintained in culture for 7 days to induce IH. Further in vitro studies were conducted in primary human vascular smooth muscle cell (VSMC).FindingsSTS inhibited IH in mice and in human vein segments. STS inhibited cell proliferation in the carotid artery wall and in human vein segments. STS increased polysulfides in vivo and protein persulfidation in vitro, which correlated with microtubule depolymerization, cell cycle arrest and reduced VSMC migration and proliferation.InterpretationSTS, a drug used for the treatment of cyanide poisoning and calciphylaxis, protects against IH in a mouse model of arterial restenosis and in human vein segments. STS acts as an H2S donor to limit VSMC migration and proliferation via microtubule depolymerization.FundingThis work was supported by the Swiss National Science Foundation (grant FN-310030_176158 to FA and SD and PZ00P3-185927 to AL); the Novartis Foundation to FA; and the Union des Sociétés Suisses des Maladies Vasculaires to SD.Graphical AbstractResearch in contextEvidence before this studyIntimal hyperplasia (IH) is a complex process leading to vessel restenosis, a major complication following cardiovascular surgeries and angioplasties. Therapies to limit IH are currently limited. Pre-clinical studies suggest that hydrogen sulfide (H2S), an endogenous gasotransmitter, limits restenosis. However, despite these potent cardiovascular benefits in pre-clinical studies, H2S-based therapeutics are not available yet. Sodium thiosulfate (Na2S2O3) is an FDA-approved drug used for the treatment of cyanide poisoning and calciphylaxis, a rare condition of vascular calcification affecting patients with end-stage renal disease. Evidence suggest that thiosulfate may generate H2S in vivo in pre-clinical studies.Added value of this studyHere, we demonstrate that STS inhibit IH in a surgical mouse model of IH and in an ex vivo model of IH in human vein culture. We further found that STS increases circulating polysulfide levels in vivo and inhibits IH via decreased cell proliferation via disruption of the normal cell’s cytoskeleton. Finally, using CSE knockout mice, the main enzyme responsible for H2S production in the vasculature, we found that STS rescue these mice from accelerated IF formation.Implications of all the available evidenceThese findings suggest that STS holds strong translational potentials to limit IH following vascular surgeries and should be investigated further.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3