Rotational Activity Around an Obstacle in 2D Cardiac Tissue in Presence of Cellular Heterogeneity

Author:

Konovalov PavelORCID,Mangileva DariaORCID,Dokuchaev ArseniiORCID,Solovyova OlgaORCID,Panfilov Alexander V.ORCID

Abstract

AbstractWaves of electrical excitation rotating around an obstacle is one of the important mechanisms of dangerous cardiac arrhythmias occurring in the heart damaged by post-infarction scar. Such a scar also has a border zone around it, which has electrophysiological properties different from the rest of normal myocardial tissue. Spatial patterns of wave rotation in the presence of such tissue heterogeneity are poorly studied. In this paper we perform a comprehensive numerical study of various regimes of rotation of a wave in a plane layer of the ventricular tissue around an obstacle surrounded by a gray zone. We use a TP06 cellular ionic model which reproduces the electrophysiological properties of cardiomyocytes in the left ventricle of human heart. We vary the extent of obstacle and gray zone and study the pattern of wave rotation and its period. We observed different regimes of wave rotation that can be subdivided into several classes: (1) functional rotation and (2) scar rotation regimes, which were identified in the previous studies, and new (3) gray zone rotation regime: where the wave instead of rotation around the obstacle, rotates around the gray zone (an area of tissue heterogeneity) itself. For each class, the period of rotation is determined by different factors, which we discuss and quantify. We also found that due to regional pathological remodeling of myocardial tissue, we can obtain additional regimes associated with dynamical instabilities of two types which may affect or not affect the period of rotation.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3