Abstract
AbstractThe response of the brain to the explosion induced primary blast waves is actively sought. Over the past decade, reasonable progress has been made in the fundamental understanding of bTBI using head surrogates and animal models. Yet, the current understanding of how blast waves interact with the human is in nascent stages, primarily due to lack of data in humans. The biomechanical response in human is critically required so that connection to the aforementioned bTBI models can be faithfully established. Here, using a detailed, full-body human model, we elucidate the biomechanical cascade of the brain under a primary blast. The input to the model is incident overpressure as achieved by specifying charge mass and standoff distance through ConWep. The full-body model allows to holistically probe short- (<5 ms) and long-term (200 ms) brain biomechanical responses. The full-body model has been extensively validated against impact loading in the past. In this work, we validate the head model against blast loading. We also incorporate structural anisotropy of the brain white matter. Blast wave human interaction is modeled using a conventional weapon modeling approach. We demonstrate that the blast wave transmission, linear and rotational motion of the head are dominant pathways for the biomechanical loading of the brain, and these loading paradigms generate distinct biomechanical fields within the brain. Blast transmission and linear motion of the head govern the volumetric response, whereas the rotational motion of the head governs the deviatoric response. We also observe that blast induced head rotation alone produces a diffuse injury pattern in white matter fiber tracts. Lastly, we find that the biomechanical response under blast is comparable to the impact event. These insights will augment laboratory and clinical investigations of bTBI and help devise better blast mitigation strategies.
Publisher
Cold Spring Harbor Laboratory