The Barley HvSTP13GR mutant triggers resistance against biotrophic fungi

Author:

Skoppek Ines Caroline,Punt Wilko,Heinrichs Marleen,Ordon Frank,Wehner Gwendolin,Boch JensORCID,Streubel JanaORCID

Abstract

AbstractHigh-yielding and stress resistant crops are essential to ensure future food supply. Barley is an important crop to feed livestock and to produce malt, but the annual yield is threatened by pathogen infections. Pathogens can trigger an altered sugar partitioning in the host plant, that possibly leads to an advantage for the pathogen. Hampering these processes represents a promising strategy to potentially increase resistance. We analyzed the response of the barley monosaccharide transporter HvSTP13 towards biotic stress and its potential use for plant protection. The expression of HvSTP13 increased upon bacterial and fungal PAMP application, suggesting a PAMP-triggered signaling that converged on the transcriptional induction of the gene. Promoter studies indicate a region that is likely targeted by transcription factors downstream of PAMP-triggered immunity pathways. We confirmed that the non-functional HvSTP13GR variant confers resistance against an economically relevant biotrophic rust fungus, in barley. In addition, we established targeted CRISPR/Cas9 cytosine base editing in barley protoplasts to generate alternative HvSTP13 mutants and characterized the sugar transport activity and subcellular localization of the proteins. These mutants represent promising variants for future resistance analysis. Our experimental setup provides basal prerequisites to further decode the role of HvSTP13 in response to biological stress. Moreover, in line with other studies, our experiments indicate that the alteration of sugar partitioning pathways, in a host pathogen interaction, is a promising approach to achieve broad and durable resistance in plants.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3