Molecular insights into the inhibition of plasmepsins by HIV-1 protease inhibitors: Implications for antimalarial drug discovery

Author:

Mishra VandanaORCID,Rathore IshanORCID,Deshmukh AnuradhaORCID,Patankar SwatiORCID,Gustchina Alla,Wlodawer AlexanderORCID,Yada Rickey Y.ORCID,Bhaumik PrasenjitORCID

Abstract

1.AbstractMalaria is a deadly disease, and the worldwide emergence of drug resistance in the Plasmodium parasites demands the development of novel and potent antimalarials. HIV-1 protease inhibitors (HIV-1 PIs) alleviate the Plasmodium pathogenesis during malaria/HIV-1 co-infection plausibly by inhibiting vacuolar plasmepsins (PMs), the hemoglobin degrading proteases from P. falciparum. All five FDA-approved HIV-1 PIs tested against PMII exhibit the Ki values in the low micromolar range of which RTV and LPV display the highest inhibition activity. Both inhibitors impede in vitro growth of P. falciparum at low micromolar IC50 values. We report the first crystal structures of PMII complexed with RTV and LPV that reveal the binding mode and interactions of the inhibitors in the active site as well as elucidate the mechanism underlying their differential potency. The conformational flexibility of the P4 group in RTV allows it to explore multiple regions of the S4 pocket. The present study establishes vacuolar PMs as potential drug targets of HIV-1 PIs. The molecular details explaining the inhibitory mechanism of HIV-1 PIs might be crucial in designing novel and potent antimalarial analogs. This work strengthens the prospect of drug repurposing as an alternative strategy towards antimalarial treatments and provides an opportunity to tackle malaria and HIV-1 co-infection.

Publisher

Cold Spring Harbor Laboratory

Reference31 articles.

1. World malaria report 2020: 20 years of global progress and challenges. Geneva: World Health Organization; 2020., (n.d.).

2. Malaria

3. Artemisinin Resistance inPlasmodium falciparumMalaria

4. Antimalarial drug discovery: old and new approaches

5. Drug repurposing: progress, challenges and recommendations

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3