Author:
Vicente Filipe Nunes,Lelek Mickael,Tinevez Jean-Yves,Tran Quang D.,Pehau-Arnaudet Gerard,Zimmer Christophe,Etienne-Manneville Sandrine,Giannone Gregory,Leduc Cécile
Abstract
AbstractIntermediate filaments (IF) are involved in key cellular functions including polarization, migration, and protection against large deformations. These functions are related to their remarkable ability to extend without breaking, a capacity that should be determined by the molecular organization of subunits within filaments. However, this structure-mechanics relationship remains poorly understood at the molecular level. Here, using super-resolution microscopy (SRM), we show that vimentin filaments exhibit a ~49 nm axial repeat both in cells and in vitro. As unit-length-filaments (ULFs) were measured at ~59 nm, this demonstrates a partial overlap of ULFs during filament assembly. Using an SRM-compatible stretching device, we also provide evidence that the extensibility of vimentin is due to the unfolding of its subunits and not to their sliding, thus establishing a direct link between the structural organization and its mechanical properties. Overall, our results pave the way for future studies of IF assembly, mechanical and structural properties in cells.
Publisher
Cold Spring Harbor Laboratory