Reovirus sensitizes microsatellite stable colorectal cancer to anti-PD-1 treatment via cross-talk in innate and adaptive immune systems

Author:

Augustine TittoORCID,John Peter,Friedman Tyler,Jiffry Jeeshan,Guzik Hillary,Mannan Rifat,Gupta Riya,Delano Catherine,Mariadason John M.,Zang Xingxing,Maitra Radhashree,Goel Sanjay

Abstract

AbstractBackgroundMicrosatellite stable (MSS) colorectal cancer (CRC) represents ~85% of all CRCs. These tumors are poorly immunogenic and largely resistant to immunotherapy, necessitating a need to develop new immune enhancing strategies. Oncolytic reovirus has a high propensity to replicate in KRAS mutant tumors which account for ~50% of MSS CRCs. Current study explores the ability of reovirus to potentiate the effect of immune checkpoint inhibition in MSS CRC.MethodsEffectiveness of reovirus infection was quantified through MTT assay for cell viability, and expression of immune-response genes by flow cytometry, RT-qPCR, and microarray. Computational analysis of differentially expressed genes was performed by TAC, DAVID and STRING. Combinatorial approach using anti-PD-1 monoclonal antibody was assessed in ex vivo and in vivo models. Live-cell imaging, tumor volume and survival were measured for quantification of anti-tumor activity. Expression of pattern recognition receptors (PRRs), cell surface and activation markers of immune cells, and PD-1/PD-L1 axis were studied using multi-color flow cytometry, immunoblotting, immunohistochemistry, and immunofluorescence.ResultsReovirus infection exerted growth arrest and expression of immune-response genes in CRCs cell lines in a KRAS-dependent manner. However, microsatellite instability, rather than KRAS status determined immune-repose pathways, functionalities and biological processes post-reovirus infection. Furthermore, reovirus significantly enhanced the anti-tumor activity of anti-human PD-1 [nivolumab] treatment in MSS CRC cell lines ex vivo. Similarly, reovirus increased the activity of anti-mouse PD-1 treatment in the CT26 [MSS, KRASMut], but not the MC38 [MSI, KRASWt] syngeneic mouse model of CRC. Combinatorial treatment has reduced the proliferative index, increased apoptosis and differentially altered PD-L1/PD-1 signaling among CT26 and MC38 tumors. Activation of innate immune system and expression of PRRs and antigen presentation markers were observed under reovirus and anti-PD-1 treatment that additionally reduced immunosuppressive macrophages. This led to an increase in T cell subsets, increase in effector T cell activation, and decrease in exhaustion markers specifically within CT26 microenvironment.ConclusionThe current study systematically evaluates immune characteristics and immune microenvironment of CRC under reovirus/anti-PD-1 combination treatment that proves increased effectiveness among MSS compared to MSI CRCs. This is a promising regimen warranting translation into clinical trials.One Sentence SummaryOncolytic reovirus alters innate and adaptive immune system and potentiates MSS type colorectal cancer to checkpoint inhibition therapy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3