Abstract
SUMMARYCortical glutamate and midbrain dopamine neurotransmission converge to mediate striatum-dependent behaviors, while maladaptations in striatal circuitry contribute to mental disorders. Here we uncover a molecular mechanism by which glutamatergic and dopaminergic signaling integrate to regulate cAMP-dependent protein kinase (PKA) via phosphorylation of the PKA regulatory subunit, RIIβ. We find that glutamate-dependent reduction in Cdk5-dependent RIIβ phosphorylation alters the PKA holoenzyme auto-inhibitory state to increase PKA signaling in response to dopamine. Disruption of RIIβ phosphorylation by Cdk5, consequently, enhances cortico-ventral striatal synaptic plasticity. Acute and chronic stress in rats inversely modulate RIIβ phosphorylation and ventral striatal infusion of a small interfering peptide that selectively targets RIIβ regulation by Cdk5 improves behavioral response to stress. This new signaling mechanism integrating ventral striatal glutamate and dopamine neurotransmission is likely important to brain function, may contribute to neuropsychiatric conditions, and serves as a possible target for the development of novel therapeutics for stress-related disorders.
Publisher
Cold Spring Harbor Laboratory