Angiotensin II Inhibits the A-type K+ Current of Hypothalamic Paraventricular Nucleus Neurons in Rats with Heart Failure: Role of MAPK-ERK1/2 Signaling

Author:

Roy Ranjan K.,Ferreira-Neto Hildebrando Candido,Felder Robert B.,Stern Javier E.

Abstract

ABSTRACTANGII-mediated sympathohumoral activation constitutes a key pathophysiological mechanism in heart failure (HF). While the hypothalamic paraventricular nucleus (PVN) is recognized as a major site mediating ANGII effects in HF, the precise mechanisms by which ANGII influences sympathohumoral outflow from the PVN remain unknown. ANGII activates the ubiquitous intracellular MAPK signaling cascades and recent studies revealed a key role for ERK1/2 MAPK signaling in ANGII-mediated sympathoexcitation in HF rats. Importantly, ERK1/2 was reported to inhibit the transient outward potassium current (IA) in hippocampal neurons. Given that IA is a critical determinant of the PVN neuronal excitability, and that downregulation of IA in the brain has been reported in cardiovascular disease states, including HF, we investigated here whether ANGII modulates IA in PVN neurons via the MAPK-ERK pathway, and, whether these effects are altered in HF rats. Patch-clamp recordings from identified magnocellular neurosecretory (MNNs) and presympathetic (PS) PVN neurons revealed that ANGII inhibited IA in both PVN neuronal types, both in sham and HF rats. Importantly, ANGII effects were blocked by inhibiting MAPK-ERK signaling as well as by inhibiting EGFR, a gateway to MAPK-ERK signaling. While no differences in basal IA magnitude were found between sham and HF rats under normal conditions, MAPK-ERK blockade resulted in significantly larger IA in both PVN neuronal types in HF rats. Taken together, our studies show that ANGII-induced ERK1/2 activity inhibits IA and increases the excitability of presympathetic and neuroendocrine PVN neurons, contributing to the neurohumoral overactivity than promotes progression of the HF syndrome.GRAPHICAL ABSTRACT

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3