Magnetic DNA random access memory with nanopore readouts and exponentially-scaled combinatorial addressing

Author:

Lau Billy,Chandak Shubham,Roy Sharmili,Tatwawadi Kedar,Wootters Mary,Weissman Tsachy,Ji Hanlee P.

Abstract

ABSTRACTThe storage of data in DNA typically involves encoding and synthesizing data into short oligonucleotides, followed by reading with a sequencing instrument. Major challenges include the molecular consumption of synthesized DNA, issues with basecalling errors, and limitations with scaling up read access operations for individual data elements. Addressing these challenges, we describe a DNA storage system called MDRAM (Magnetic DNA-based Random Access Memory) that enables repetitive and efficient readouts of targeted files with nanopore-based sequencing. Through conjugation of synthesized DNA to magnetic beads, we enabled repeated readouts of data while preserving the original DNA analyte and maintaining data readout quality. MDRAM also utilizes an efficient convolutional coding scheme that leverages soft information in raw nanopore sequencing signals to achieve information reading costs comparable to Illumina sequencing despite substantially higher error rates. Finally, we demonstrate a proof-of-concept DNA-based proto-filesystem that enables an exponentially-scalable data address space using only small numbers of targeting primers for assembly and readout.ONE-SENTENCE SUMMARYWe demonstrate a novel DNA data storage system that leverages conjugation of DNA onto magnetic beads, new computational advances in data encoding, and exponentially scalable access of individual data elements.

Publisher

Cold Spring Harbor Laboratory

Reference33 articles.

1. Long-term data storage in DNA;Trends in Biotechnology,2001

2. Next-Generation Digital Information Storage in DNA

3. Molecular digital data storage using DNA

4. J. Bornholt et al., paper presented at the Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages and Operating Systems, Atlanta, Georgia, USA, 2016.

5. Towards practical, high-capacity, low-maintenance information storage in synthesized DNA

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3