Large dataset of octocoral mitochondrial genomes provides new insights into mt-mutS evolution and function

Author:

Muthye VirajORCID,Mackereth Cameron D.ORCID,Stewart James B.ORCID,Lavrov Dennis V.ORCID

Abstract

AbstractAll studied octocoral mitochondrial genomes contain a gene from the MutS family, whose members code for proteins involved in DNA mismatch repair, other types of DNA repair, meiotic recombination, and other functions. Although mutS homologues are found in all domains of life as well as viruses, octocoral mt-mutS is the only such gene encoded in an organellar genome. While the function of mtMutS is not known, its domain architecture, conserved sequence, and presence of some characteristic residues suggest its involvement in mitochondrial DNA repair. This inference is supported by exceptionally low rates of mt-sequence evolution observed in octocorals. Previous studies of mt-mutS have been limited by the small number of octocoral mt-genomes available. We utilized sequence-capture data from the recent Quattrini et al. study to assemble complete mitochondrial genomes for 97 species of octocorals. Combined with sequences publicly available in GenBank, this resulted in a dataset of 184 complete mitochondrial genomes, which we used to re-analyze the conservation and evolution of mt-mutS. We discovered the first case of mt-mutS loss among octocorals in one of the two Pseudoanthomastus sp. assembled from Quattrini et al. data. This species displayed accelerated rate and and changed patterns of nucleotide substitutions in mt-genome, which we argue provide additional evidence for the role of mtMutS in DNA repair. In addition, we found accelerated mt-sequence evolution in the presence of mt-mutS in several octocoral lineages. This accelerated evolution did not appear to be the result of relaxed selection pressure and did not entail changes in patterns of nucleotide substitutions. Overall, our results support previously reported patterns of conservation in mt-mutS and suggest that mtMutS is involved in DNA repair in octocoral mitochondria. They also indicate that the presence of mt-mutS contributes to, but does not fully explain, the low rates of sequence evolution in octocorals

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3