Predicting the Effectiveness of Covid-19 Vaccines from SARS-CoV-2 Variants Neutralisation Data

Author:

Volkov Oleg,Borozdenkova Svetlana,Gray Alexander

Abstract

AbstractRapid and accurate prediction of Covid-19 vaccine effectiveness is crucial to response against SARS-CoV-2 variants of concern. Despite intensive research, several prediction tasks are not well supported, such as predicting effectiveness of partial vaccination, of vaccine boosters and in vaccinated subpopulations. This paper introduces a novel predictive framework to accommodate such tasks and improve prediction accuracy. It was developed for predicting the symptomatic effectiveness of the BNT162b2 (Comirnaty) and ChAdOx1 nCoV-19 (Vaxzevria) vaccines but could apply to other vaccines and effectiveness types. Direct prediction within the framework uses levels of vaccine-induced neutralising antibodies against SARS-CoV-2 variants to fit efficacy and effectiveness estimates from studies with a given vaccine. Indirect prediction uses a model fitted for one vaccine to predict the effectiveness of another. The directly predicted effectiveness of Comirnaty against the Delta variant was 44.8% (22, 69) after one and 84.6% (64, 97) after two doses, which is close to 45.6% and 85.5%, the average estimates from effectiveness studies with the vaccine. The corresponding direct predictions for Vaxzevria were 41.6% (18, 68) and 63.2% (37, 86); and the indirect predictions, from the model fitted to Comirnaty data, were 45.5% (23, 70) and 61.2% (37, 83). Both sets of predictions are comparable to the average estimates, 42.5% and 66.3%, from effectiveness studies with Vaxzevria. Further results are presented on age subgroups; prediction biases and their mitigation; and implications for vaccination policies.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3