Integrative multi-omics identifies high risk Multiple Myeloma subgroup associated with significant DNA loss and dysregulated DNA repair and cell cycle pathways

Author:

Ortiz-Estévez MaríaORCID,Samur MehmetORCID,Towfic FadiORCID,Flynt Erin,Stong Nicholas,Jang In SockORCID,Wang Kai,Vyas PareshORCID,Munshi Nikhil,Avet-Loiseau HerveORCID,Trotter Matthew W. B.,Morgan Gareth J.ORCID,Walker Brian A.ORCID,Thakurta AnjanORCID

Abstract

AbstractDespite significant therapeutic advances in improving lives of Multiple Myeloma (MM) patients, it remains mostly incurable, with patients ultimately becoming refractory to therapies. MM is a genetically heterogeneous disease and therapeutic resistance is driven by a complex interplay of disease pathobiology and mechanisms of drug resistance. We applied a multi-omics strategy using tumor-derived gene expression, single nucleotide variant, copy number variant, and structural variant profiles to investigate molecular subgroups in 514 newly diagnosed MM (NDMM) samples and identified 12 molecularly defined MM subgroups (MDMS1-12) with distinct genomic and transcriptomic features.Our integrative approach let us identify ndMM subgroups with transversal profiles to previously described ones, based on single data types, which shows the impact of this approach for disease stratification. One key novel subgroup is our MDMS8, associated with poor clinical outcome [median overall survival, 38 months (global log-rank pval<1×10−6)], which uniquely presents a broad genomic loss (>9% of entire genome, t.test pval<1e-5) driving dysregulation of various transcriptional programs affecting DNA repair and cell cycle/mitotic processes. This subgroup was validated on multiple independent datasets, and a master regulator analyses identified transcription factors controlling MDMS8 transcriptomic profile, including CKS1B and PRKDC among others, which are regulators of the DNA repair and cell cycle pathways.Statement of SignificanceUsing multi-omics unsupervised clustering we discovered a new high-risk multiple myeloma patient segment. We linked its diverse genetic markers (previously known, and new including genomic loss) to transcriptional dysregulation (cell cycle, DNA repair and DNA damage) and identified master regulators that control these key biological pathways.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3