Cluster mean-field theory accurately predicts statistical properties of large-scale DNA methylation patterns

Author:

Kerr LyndsayORCID,Sproul DuncanORCID,Grima RamonORCID

Abstract

AbstractThe accurate establishment and maintenance of DNA methylation patterns is vital for mammalian development and disruption to these processes causes human disease. Our understanding of DNA methylation mechanisms has been facilitated by mathematical modelling, particularly stochastic simulations. Mega-base scale variation in DNA methylation patterns is observed in development, cancer and ageing and the mechanisms generating these patterns are little understood. However, the computational cost of stochastic simulations prevents them from modelling such large genomic regions. Here we test the utility of three different mean-field models to predict large-scale DNA methylation patterns. By comparison to stochastic simulations, we show that a cluster mean-field model accurately predicts the statistical properties of steady-state DNA methylation patterns, including the mean and variance of methylation levels calculated across a system of CpG sites, as well as the covariance and correlation of methylation levels between neighbouring sites. We also demonstrate that a cluster mean-field model can be used within an approximate Bayesian computation framework to accurately infer model parameters from data. As mean-field models can be solved numerically in a few seconds, our work demonstrates their utility for understanding the processes underpinning large-scale DNA methylation patterns.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3