Laminin switches terminal differentiation fate of human trophoblast stem cells under chemically defined culture conditions

Author:

Karakis Victoria,McDonald Thomas,Cordiner Abigail,Mischler Adam,Miguel Adriana San,Rao Balaji MORCID

Abstract

AbstractHuman trophoblast stem cells (hTSCs) have emerged as a powerful tool to model early placental development in vitro. Analogous to the epithelial cytotrophoblast in the placenta, hTSCs can differentiate into cells of the extravillous trophoblast (EVT) lineage or the multinucleate syncytiotrophoblast (STB). Here we present a chemically defined culture system for STB and EVT differentiation of hTSCs. Notably, in contrast to current approaches, we do not utilize transforming growth factor-beta inhibitors or a passage step for EVT differentiation, or forskolin for STB formation. Strikingly, under these conditions, presence of a single additional extracellular cue – lam-inin-1 – switched the terminal differentiation of hTSCs from STB to the EVT lineage. Activation of the sphingosine-1 receptor 3 receptor (S1PR3) using a chemical agonist could drive EVT differentiation of hTSCs in the absence of exogenous laminin, albeit less efficiently. To illustrate the utility of a chemically defined culture system for mechanistic studies, we examined the role of protein kinase C (PKC) signaling during hTSC differentiation to the EVT lineage. Inhibition of PKCα/β signaling significantly reduced HLA-G expression and the formation of HLA-G+ mesen-chymal EVTs during hTSC differentiation mediated by laminin exposure; however, it did not prevent commitment to the EVT lineage or STB differentiation. The chemically defined culture system for hTSC differentiation established herein facilitates quantitative analysis of heterogeneity that arises during hTSC differentiation, and will enable mechanistic studies in vitro.SignificanceDespite its importance to a healthy pregnancy, early human placental development remains poorly understood. Mechanistic studies are impeded by restrictions on research with human embryos and fetal tissues, and significant differences in placentation between humans and commonly used animal models. In this context, human trophoblast stem cells (hTSCs) have emerged as attractive in vitro models for the epithelial cytotrophoblast of the early gestation human placenta. Here we describe chemically defined culture conditions for differentiation of hTSCs to the two major differentiated cell types – extravillous trophoblast and syncytiotrophoblast. These culture conditions enable in vitro studies to reveal molecular mechanisms regulating hTSC differentiation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3