Abstract
AbstractRed blood cells (RBCs) are cleared from the circulation when they become damaged or display aging signals targeted by macrophages. This process occurs mainly in the spleen, where blood flows through submicrometric constrictions called inter-endothelial slits (IES), subjecting RBCs to large-amplitude deformations. In this work, we circulated RBCs through microfluidic devices containing microchannels that replicate the IES. The cyclic mechanical stresses experienced by the cells affected their biophysical properties and molecular composition, accelerating cell aging. Specifically, RBCs quickly transitioned to a more spherical, less deformable phenotype that hindered microchannel passage, causing hemolysis. This transition was associated with the release of membrane vesicles, which self-extinguished as the spacing between membrane-cytoskeleton linkers became tighter. Proteomics analysis of the mechanically aged RBCs revealed significant losses of essential proteins involved in antioxidant protection, gas transport, and cell metabolism. Finally, we show that these changes made mechanically aged RBCs more susceptible to macrophage phagocytosis. These results provide a comprehensive model to explain how physical stress induces RBC clearance in the spleen.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献