Both Simulation and Sequencing Data Reveal Multiple SARS-CoV-2 Variants Coinfection in COVID-19 Pandemic

Author:

Li Yinhu,Jiang Yiqi,Li Zhengtu,Yu Yonghan,Chen Jiaxing,Jia WenlongORCID,Ng Yen Kaow,Ye Feng,Shen Bairong,Li Shuai ChengORCID

Abstract

AbstractSARS-CoV-2 is a single-stranded RNA betacoronavirus with a high mutation rate. The rapidly emerged SARS-CoV-2 variants could increase the transmissibility, aggravate the severity, and even fade the vaccine protection. Although the coinfections of SARS-CoV-2 with other respiratory pathogens have been reported, whether multiple SARS-CoV-2 variants coinfection exists remains controversial. This study collected 12,986 and 4,113 SARS-CoV-2 genomes from the GISAID database on May 11, 2020 (GISAID20May11) and April 1, 2021 (GISAID21Apr1), respectively. With the single-nucleotide variants (SNV) and network clique analysis, we constructed the single-nucleotide polymorphism (SNP) coexistence networks and noted the SNP number of the maximal clique as the coinfection index. The coinfection indices of GISAID20May11 and GISAID21Apr1 datasets were 16 and 34, respectively. Simulating the transmission routes and the mutation accumulations, we discovered the linear relationship between the coinfection index and the coinfected variant number. Based on the linear relationship, we deduced that the COVID-19 cases in the GISAID20May11 and GISAID21Apr1 datasets were coinfected with 2.20 and 3.42 SARS-CoV-2 variants on average. Additionally, we performed Nanopore sequencing on 42 COVID-19 patients to explore the virus mutational characteristics. We found the heterozygous SNPs in 41 COVID-19 cases, which support the coinfection of SARS-CoV-2 variants and challenge the accuracy of phylogenetic analysis. In conclusion, our findings reported the coinfection of SARS-CoV-2 variants in COVID-19 patients, demonstrated the increased coinfected variants number in the epidemic, and provided clues for the prolonged viral shedding and severe symptoms in some cases.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3