A model screening pipeline for bile acid converting anti-Clostridioides difficile bacteria reveals unique biotherapeutic potential of Peptacetobacter hiranonis

Author:

Vinithakumari Akhil A.ORCID,Hernandez Belen G.,Ghimire SudeepORCID,Adams SeiduORCID,Stokes Caroline,Jepsen Isaac,Brezina Caleb,Sahin OrhanORCID,Li Ganwu,Tangudu Chandra,Andreasen Claire,Philips Gregory J.,Wannemuehler Michael,Jergens Albert E.,Scaria JoyORCID,Sponseller Brett,Mooyottu Shankumar

Abstract

AbstractClostridioides difficile is an antibiotic-resistant bacterium that causes serious, toxin-mediated enteric disease in humans and animals. Gut dysbiosis and resultant alterations in the intestinal bile acid profile play an important role in the pathogenesis of C. difficile infection (CDI). Restoration of the gut microbiota and re-establishment of bacterial bile acid metabolism using fecal microbiota transplantation (FMT) has been established as a promising strategy against this disease, although this method has several limitations. Thus, a more defined and precise microbiota-based approach using bacteria that biotransform primary bile acids into secondary bile acids could effectively overcome these limitations and control CDI. Therefore, a screening pipeline was developed to isolate bile acid converting bacteria from fecal samples. Dogs were selected as a model CDI-resistant microbiota donor for this pipeline, which yielded a novel Peptacetobacter hiranonis strain that possesses unique anti-C. difficile properties, and both bile acid deconjugation and 7-α dehydroxylating activities to perform bile acid conversion. The screening pipeline included a set of in vitro tests along with a precision in vivo gut colonization and bile acid conversion test using altered Schadler flora (ASF) colonized mice. In addition, this pipeline also provided essential information on the growth requirements for screening and cultivating the candidate bacterium, its survival in a CDI predisposing environment, and potential pathogenicity. The model pipeline documented here yielded multiple bile acid converting bacteria, including a P. hiranonis isolate with unique anti-C. difficile biotherapeutic potential, which can be further tested in subsequent preclinical and human clinical trials.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3