Acidity and sulfur oxidation intermediate concentrations controlled by O2-driven partitioning of sulfur oxidizing bacteria in a mine tailings impoundment

Author:

Whaley-Martin Kelly J.ORCID,Chen Lin-XingORCID,Nelson Tara Colenbrander,Gordon Jennifer,Kantor RoseORCID,Twible Lauren E.ORCID,Marshall Stephanie,Rossi Laura,Bessette Benoit,Baron ChristianORCID,Apte SimonORCID,Banfield Jillian F.ORCID,Warren Lesley A.

Abstract

AbstractAcidification of freshwater in mining impacted areas is a major global environmental problem catalyzed by sulfur-oxidizing bacteria (SOB). To date, little is known about the active bacteria in mine tailings impoundments and their environmental niches. Here, biological sulfur oxidation was investigated over four years in a mine tailings impoundment, integrating sulfur geochemistry, genome-resolved metagenomics and metatranscriptomics. We demonstrated oxygen driven niche partitioning of SOB and their metabolic pathways that explain acidity generation and thiosulfate persistence. Four chemolithoautotrophic SOB, Halothiobacillus, Thiobacillus, Sulfuricurvum and Sediminibacterium comprised 37% to 73% of the analyzed communities. The impoundment waters alternated between the dominance of Halothiobacillus versus a Thiobacillus, Halothiobacillus, Sulfuricurvum and Sediminibacterium consortia. Halothiobacillus dominance was associated with lower pH values (∼4.3), higher [H+]/[SO42-] and lower [S2O32-], collectively indicative of extensive sulfur oxidation. Halothiobacillus, which couple sulfur oxidation via the Sox pathway to aerobic respiration or NO2- reduction, were present throughout the depth profile, yet their expression of sox genes occurred only in upper highly oxygenated waters. Conversely, when consortia of Thiobacillus, Halothiobacillus, Sulfuricurvum and Sediminibacterium dominated, recycling/disproportionating reactions were more prevalent. Thiobacillus, which dominated deeper micro-oxic/anoxic waters, oxidized sulfur primarily through the rDSR pathway, coupled to NO3-/NO2- reduction, resulting in lower [H+]/[SO42-] and higher [S2O32-] relative to upper waters. These field results mirror the Sox/rDSR-geochemical patterns of experimental SOB enrichments and reveal opportunities for biological treatments of recalcitrant reduced sulfur compounds, as well as gene-based monitoring and in situ RNA detection to predict the onset of problematic geochemistry.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3