MoSBi: Automated signature mining for molecular stratification and subtyping

Author:

Rose Tim DanielORCID,Bechtler Thibault,Ciora Octavia-Andreea,Lilian Le Kim Anh,Molnar Florian,Koehler Nikolai,Baumbach Jan,Röttger Richard,Pauling Josch Konstantin

Abstract

AbstractThe improving access to increasing amounts of biomedical data provides completely new chances for advanced patient stratification and disease subtyping strategies. This requires computational tools that produce uniformly robust results across highly heterogeneous molecular data. Unsupervised machine learning methodologies are able to discover de-novo patterns in such data. Biclustering is especially suited by simultaneously identifying sample groups and corresponding feature sets across heterogeneous omics data. The performance of available biclustering algorithms heavily depends on individual parameterization and varies with their application. Here, we developed MoSBi (Molecular Signature identification using Biclustering), an automated multi-algorithm ensemble approach that integrates results utilizing an error model-supported similarity network. We evaluated the performance of MoSBi on transcriptomics, proteomics and metabolomics data, as well as synthetic datasets covering various data properties. Profiting from multi-algorithm integration, MoSBi identified robust group and disease specific signatures across all scenarios overcoming single algorithm specificities. Furthermore, we developed a scalable network-based visualization of bicluster communities that support biological hypothesis generation. MoSBi is available as an R package and web-service to make automated biclustering analysis accessible for application in molecular sample stratification.

Publisher

Cold Spring Harbor Laboratory

Reference43 articles.

1. Stratified medicine: strategic and economic implications of combining drugs and clinical biomarkers

2. Khakabimamaghani, S. & Ester, M. BAYESIAN BICLUSTERING FOR PATIENT STRATIFICATION. in Pacific Symposium on Biocomputing n345–356 (World Scientific Publishing Co. Pte Ltd, 2016).

3. BiCoN: network-constrained biclustering of patients and omics data

4. Biclustering algorithms for biological data analysis: a survey;IEEE/ACM Transactions on Computational Biology and Bioinformatics,2004

5. Comparing the performance of biomedical clustering methods

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3