Experimental Studies of Carpenter Bee (Xylocopa: Apidae) Thorax Mechanics During Defensive Buzzing

Author:

Jankauski MarkORCID,Casey Cailin,Heveran ChelseaORCID,Busby KathrynORCID,Buchmann Stephen

Abstract

AbstractBees and other Hymenoptera utilize thorax vibration to realize an extensive range of behaviors ranging from flight to pollination. Strong indirect flight muscles contract to deform the thoracic walls and the resulting oscillation is sustained through a mechanism called stretch activation. While the mechanics of the insect thorax and muscles have been studied extensively during flight, relatively little is known about the thorax mechanics during non-flight behaviors. In this work, we investigate the thorax mechanics of the carpenter bee Xylocopa californica during defensive buzzing. During defensive buzzing, the insect folds its wings over its abdomen and rapidly fires it flight muscles, resulting in a loud audible buzz and large forces intended to deter predators. We devised a novel experiment to measure thorax oscillation and directional force production from a defensively buzzing carpenter bee. The largest peak forces were on average 175 mN and were oriented with the insect’s dorsal-ventral muscle group. Peak forces oriented with the insect’s dorsal-longitudinal muscle group averaged 117 mN. Thorax velocities were about 90 mm s^-1 p-p and velocity amplitude was positively correlated to peak force. Thorax oscillation frequency averaged 132 Hz but was highly variable both within individuals and across the tested population. From our measurements, we estimated the peak mechanical power required by defensive buzzing at 8.7 mW, which we hypothesize is greater than the power required during flight. Overall, this study provides insight into the function and capabilities of the Hymenopteran indirect flight muscle during non-flight behaviors.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3