CovRNN—A recurrent neural network model for predicting outcomes of COVID-19 patients: model development and validation using EHR data

Author:

Rasmy Laila,Nigo Masayuki,Kannadath Bijun Sai,Xie Ziqian,Mao Bingyu,Patel Khush,Zhou Yujia,Zhang Wanheng,Ross Angela,Xu Hua,Zhi Degui

Abstract

ABSTRACTBackgroundPredicting outcomes of COVID-19 patients at an early stage is critical for optimized clinical care and resource management, especially during a pandemic. Although multiple machine learning models have been proposed to address this issue, based on the need for extensive data pre-processing and feature engineering, these models have not been validated or implemented outside of the original study site.MethodsIn this study, we propose CovRNN, recurrent neural network (RNN)-based models to predict COVID-19 patients’ outcomes, using their available electronic health record (EHR) data on admission, without the need for specific feature selection or missing data imputation. CovRNN is designed to predict three outcomes: in-hospital mortality, need for mechanical ventilation, and long length of stay (LOS >7 days). Predictions are made for time-to-event risk scores (survival prediction) and all-time risk scores (binary prediction). Our models were trained and validated using heterogeneous and de-identified data of 247,960 COVID-19 patients from 87 healthcare systems, derived from the Cerner® Real-World Dataset (CRWD). External validation was performed using three test sets (approximately 53,000 patients). Further, the transferability of CovRNN was validated using 36,140 de-identified patients’ data derived from the Optum® de-identified COVID-19 Electronic Health Record v. 1015 dataset (2007–2020).FindingsCovRNN shows higher performance than do traditional models. It achieved an area under the receiving operating characteristic (AUROC) of 93% for mortality and mechanical ventilation predictions on the CRWD test set (vs. 91·5% and 90% for light gradient boost machine (LGBM) and logistic regression (LR), respectively) and 86.5% for prediction of LOS > 7 days (vs. 81·7% and 80% for LGBM and LR, respectively). For survival prediction, CovRNN achieved a C-index of 86% for mortality and 92·6% for mechanical ventilation. External validation confirmed AUROCs in similar ranges.InterpretationTrained on a large heterogeneous real-world dataset, our CovRNN model showed high prediction accuracy, good calibration, and transferability through consistently good performance on multiple external datasets. Our results demonstrate the feasibility of a COVID-19 predictive model that delivers high accuracy without the need for complex feature engineering.

Publisher

Cold Spring Harbor Laboratory

Reference28 articles.

1. Coronavirus disease (COVID-19) – World Health Organization. https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed May 29, 2021).

2. CDC. COVID Data Tracker. 2020; published online March 28. https://covid.cdc.gov/covid-data-tracker (accessed March 28, 2021).

3. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal

4. Prediction models for diagnosis and prognosis in Covid-19

5. Prediction models for COVID-19 clinical decision making;Lancet Digit Health,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3