Comparative ‘omics analyses differentiate Mycobacterium tuberculosis and Mycobacterium bovis and reveal distinct macrophage responses to infection with the human and bovine tubercle bacilli

Author:

Malone Kerri M.ORCID,Rue-Albrecht KévinORCID,Magee David A.,Conlon Kevin,Schubert Olga T.ORCID,Nalpas Nicolas C.,Browne John A.,Smyth Alicia,Gormley EamonnORCID,Aebersold RuediORCID,MacHugh David E.ORCID,Gordon Stephen V.ORCID

Abstract

AbstractMembers of the Mycobacterium tuberculosis complex (MTBC) are the causative agents of tuberculosis in a range of mammals, including humans. A key feature of MTBC pathogens is their high degree of genetic identity, yet distinct host tropism. Notably, while Mycobacterium bovis is highly virulent and pathogenic for cattle, the human pathogen M. tuberculosis is attenuated in cattle. Previous research also suggests that host preference amongst MTBC members has a basis in host innate immune responses. To explore MTBC host tropism, we present in-depth profiling of the MTBC reference strains M. bovis AF2122/97 and M. tuberculosis H37Rv at both the global transcriptional and translational level via RNA-sequencing and SWATH mass spectrometry. Furthermore, a bovine alveolar macrophage infection time course model was employed to investigate the shared and divergent host transcriptomic response to infection with M. tuberculosis or M. bovis. Significant differential expression of virulence-associated pathways between the two bacilli was revealed, including the ESX-1 secretion system. A divergent transcriptional response was observed between M. tuberculosis and M. bovis infection of bovine alveolar macrophages, in particular cytosolic DNA-sensing pathways at 48 hours post-infection, and highlights a distinct engagement of M. bovis with the bovine innate immune system. The work presented here therefore provides a basis for the identification of host innate immune mechanisms subverted by virulent host-adapted mycobacteria to promote their survival during the early stages of infection.ImportanceThe Mycobacterium tuberculosis complex (MTBC) includes the most important global pathogens for humans and animals, namely Mycobacterium tuberculosis and Mycobacterium bovis, respectively. These two exemplar mycobacterial pathogens share a high degree of genetic identity, but the molecular basis for their distinct host preference is unknown. In this work we integrated transcriptomic and proteomic analyses of the pathogens to elucidate global quantitative differences between them at the mRNA and protein level. We then integrated this data with transcriptome analysis of the bovine macrophage response to infection with either pathogen. Increased expression of the ESX-1 virulence system in M. bovis appeared a key driver of an increased cytosolic nucleic acid sensing and interferon response in bovine macrophages infected with M. bovis compared to M. tuberculosis. Our work demonstrates the specificity of host-pathogen interaction and how the subtle interplay between mycobacterial phenotype and host response may underpin host specificity amongst MTBC members.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3