Identifying individual risk rare variants using protein structure-guided local tests (POINT)

Author:

West Rachel Marceau,Lu WenbinORCID,Rotroff Daniel M.,Kuenemann Melaine,Chang Sheng-Mao,Wagner Michael J.ORCID,Buse John B.,Motsinger-Reif AlisonORCID,Fourches DenisORCID,Tzeng Jung-YingORCID

Abstract

AbstractRare variants are of increasing interest to genetic association studies because of their etiological contributions to human complex diseases. Due to the rarity of the mutant events, rare variants are routinely analyzed on an aggregate level. While aggregation analyses improve the detection of global-level signal, they are not able to pinpoint causal variants within a variant set. To perform inference on a localized level, additional information, e.g., biological annotation, is often needed to boost the information content of a rare variant. Following the observation that important variants are likely to cluster together on functional domains, we propose a protein structure guided local test (POINT) to provide variant-specific association information using structure-guided aggregation of signal. Constructed under a kernel machine framework, POINT performs local association testing by borrowing information from neighboring variants in the 3-dimensional protein space in a data-adaptive fashion. Besides merely providing a list of promising variants, POINT assigns each variant a p-value to permit variant ranking and prioritization. We assess the selection performance of POINT using simulations and illustrate how it can be used to prioritize individual rare variants in PCSK9 associated with low-density lipoprotein in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) clinical trial data.Author summaryWhile it is known that rare variants play an important role in understanding associations between genotype and complex diseases, pinpointing individual rare variants likely to be responsible for association is still a daunting task. Due to their low frequency in the population and reduced signal, localizing causal rare variants often requires additional information, such as type of DNA change or location of variant along the sequence, to be incorporated in a biologically meaningful fashion that does not overpower the genotype data. In this paper, we use the observation that important variants tend to cluster together on functional domains to propose a new approach for prioritizing rare variants: the protein structure guided local test (POINT). POINT uses a gene’s 3-dimensional protein folding structure to guide aggregation of information from neighboring variants in the protein in a robust manner. We show how POINT improves selection performance over single variant tests and sliding window approaches. We further illustrate how it can be used to prioritize individual rare variants using the Action to Control Cardiovascular Risk in Diabetes (ACCORD) clinical trial data, finding five promising variants within PCSK9 in association with low-density lipoprotein, including three new mutations near the PCSK9-LDLR binding domain.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3