Human myocyte-specific enhancer factor 2 comprises a group of tissue-restricted MADS box transcription factors.

Author:

Yu Y T,Breitbart R E,Smoot L B,Lee Y,Mahdavi V,Nadal-Ginard B

Abstract

The MEF2 site is an essential element of muscle enhancers and promoters that is bound by a nuclear activity found, so far, only in muscle and required for tissue-specific transcription. We have cloned a group of transcription factors from human muscle that are responsible for this activity: They are present in muscle-specific DNA-binding complexes, have a target sequence specificity identical to that of the endogenous activity, and are MEF2 site-dependent transcriptional activators. These MEF2 proteins comprise several alternatively spliced isoforms from one gene and a related factor encoded by a second gene. All share a conserved amino-terminal DNA-binding domain that includes the MADS homology. MEF2 transcripts are ubiquitous but accumulate preferentially in skeletal muscle, heart, and brain. Specific alternatively spliced isoforms are restricted to these tissues, correlating exactly with the presence of endogenous MEF2 activity. Furthermore, MEF2 protein is detected only in skeletal and cardiac muscle nuclei and not in myoblast and nonmuscle cells. Thus, post-transcriptional regulation is important in the generation of tissue-specific MEF2 activity. Cardiac and smooth, as well as skeletal, muscles contain functionally saturating levels of MEF2 trans-activating factors that are absent in nonmuscle cells. Moreover, MEF2 is induced in nonmuscle cells by MyoD; however, MEF2 alone is insufficient to produce the full muscle phenotype. Implications for the molecular mechanisms of myogenesis are considered.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

Reference62 articles.

1. Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro.

2. Multiple positive and negative 5′ regulatory elements control the cell-type-specific expression of the embryonic skeletal myosin heavy chain gene.;Mol. Cell. Biol.,1987

3. The sarcomeric actin CArG-binding factor is indistinguishable from the c-fos serum response factor.;Mol. Cell. Biol.,1989

4. Promoter upstream elements of the chicken cardiac myosin light-chain 2-A gene interact with trans-acting regulatory factors for muscle-specific transcription.;Mol. Cell. Biol.,1989

Cited by 468 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3