Infection with a small intestinal helminth Heligmosomoides polygyrus bakeri consistently alters microbial communities throughout the small and large intestine

Author:

Rapin AlexisORCID,Chuat Audrey,Lebon Luc,Zaiss Mario M.,Marsland Benjamin,Harris Nicola L.ORCID

Abstract

AbstractIncreasing evidence suggests that intestinal helminth infection can alter intestinal microbial communities with important impacts on the mammalian host. However, all of the studies to date utilize different techniques to study the microbiome and access different sites of the intestine with little consistency noted between studies. In the present study, we set out to perform a comprehensive analysis of the impact of intestinal helminth infection on the mammalian intestinal bacterial microbiome. For this purpose, we investigated the impact of experimental infection using the natural murine small intestinal helminth,Heligmosomoides polygyrus bakeri(Hpb) and examined possible alterations in both the mucous and luminal bacterial communities along the entire small and large intestine. We also explored the impact of common experimental variables, including the parasite batch and pre-infection microbiome, on the outcome of helminth-bacterial interactions. This work provides evidence that helminth infection reproducibly alters intestinal microbial communities – with an impact of infection noted along the entire length of the intestine. Although the exact nature of helminth-induced alterations to the intestinal microbiome differed depending on the parasite batch and microbiome community structure present prior to infection, changes extended well beyond the introduction of new bacterial species by the infecting larvae. Moreover, striking similarities between different experiments were noted, including the consistent outgrowth of a bacterium belonging to the Peptostreptococcaceae family throughout the intestine.Author SummaryIncreasing evidence indicates a role for interactions between intestinal helminths and the microbiome in regulating mammalian health, and a greater understanding of helminth-microbiota interactions may open the path for the development of novel immunomodulatory therapies. However, such studies are hampered by the inconsistent nature of the data reported so far. Such inconsistancies likely result from variations in the experimental and technological methodologies employed to investigate helminth-microbiota interactions and well has natural variation in the starting microbiome composition and/or worm genetics. We conducted a thorough study in which the reproducibility of helminth-induced alterations of microbial communities was determined and impact of common experimental variables – such as the starting microbiome and parasite batch - was determined. Our work reveals the robust ability of small intestinal helminth infection to alter microbial communities along the entire length of the intestine and additionally identifies a single bacterium that is strongly associated with infection across multiple experiments.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3