Membrane state diagrams make electrophysiological models simple

Author:

Law Robert,Jones Stephanie R.

Abstract

AbstractIon channels are ubiquitous in living systems. Through interactions with membrane potential, ion channels both control metabolic events and mediate cell communication. Consequentially, membrane bioelectricity bears on fields ranging from cancer etiology to computational neuro-science. Conductance models have proven successful in quantitatively capturing these dynamics but are often considered difficult, with interpretation relegated to specialists. To facilitate research in membrane dynamics, especially in fields where roles for ion channels are just beginning to be quantified, we must make these models easy to understand.Here, we show that the membrane differential equation central to conductance models can be understood using simple circular geometry. The membrane state diagrams we construct are compact, faithful representations of conductance model state, designed to look like circular “cells” with currents flowing in and out. Every feature of a membrane state diagram corresponds to a physiological variable, so that insight taken from a diagram can be translated back to the underlying model. The construction is elementary: we convert conductances to angles subtended on the circle and potentials to radii; currents are then areas of the enclosed annular sectors.Our method clarifies a powerful but prohibitive modeling approach and has the potential for widespread use in both electrophysiological research and pedagogy. We illustrate how membrane state diagrams can augment traditional methods in the stability analysis of voltage equilibria and in depicting the Hodgkin-Huxley action potential, and we use the diagrams to infer the possibility of nontrivial fixed-voltage channel population dynamics by visual inspection rather than linear algebra.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3