Author:
Roset Ramon,Inagaki Akiko,Hohl Marcel,Brenet Fabienne,Lafrance-Vanasse Julien,Lange Julian,Scandura Joseph M.,Tainer John A.,Keeney Scott,Petrini John H.J.
Abstract
The Mre11 complex (Mre11, Rad50, and Nbs1) is a central component of the DNA damage response (DDR), governing both double-strand break repair and DDR signaling. Rad50 contains a highly conserved Zn2+-dependent homodimerization interface, the Rad50 hook domain. Mutations that inactivate the hook domain produce a null phenotype. In this study, we analyzed mutants with reduced hook domain function in an effort to stratify hook-dependent Mre11 complex functions. One of these alleles, Rad5046, conferred reduced Zn2+ affinity and dimerization efficiency. Homozygous Rad5046/46 mutations were lethal in mice. However, in the presence of wild-type Rad50, Rad5046 exerted a dominant gain-of-function phenotype associated with chronic DDR signaling. At the organismal level, Rad50+/46 exhibited hydrocephalus, liver tumorigenesis, and defects in primitive hematopoietic and gametogenic cells. These outcomes were dependent on ATM, as all phenotypes were mitigated in Rad50+/46Atm+/− mice. These data reveal that the murine Rad50 hook domain strongly influences Mre11 complex-dependent DDR signaling, tissue homeostasis, and tumorigenesis.
Publisher
Cold Spring Harbor Laboratory
Subject
Developmental Biology,Genetics
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献