Pseudomonas can survive bacteriocin-mediated killing via a persistence-like mechanism

Author:

Kandel PPORCID,Baltrus David A.,Hockett Kevin L.ORCID

Abstract

AbstractPhage tail-like bacteriocins (tailocins) are bacterially-produced protein toxins that can mediate competitive interactions between co-colonizing bacteria. Both theoretical and empirical research has shown there are intransitive interactions between bacteriocin-producing, bacteriocin-sensitive, and bacteriocin-resistant populations, whereby producers outcompete sensitive, sensitive outcompete resistant, and resistant outcompete producers. These so-called ‘rock-paper-scissor’ dynamics explain how all three populations can be maintained in the same environment, without one genotype driving the others extinct. Using Pseudomonas syringae as a model system, we demonstrate that otherwise sensitive bacterial cells have the ability to survive bacteriocin exposure through a physiological mechanism. This mechanism is similar to the persister phenotype that allows cells to survive antibiotic exposure, without acquiring antibiotic resistance. We show that a significant fraction of the target cells that survive a lethal dose of tailocin did not exhibit any detectable increase in survival in subsequent exposure (i.e. they survived through a persistence-like mechanism). Tailocin persister cells were more prevelant in stationary rather than log phase cultures. Of the fraction of cells that gained detectable tailocin resistance, there was a range of resistance from complete (insensitive) to incomplete (partially sensitive). By genomic sequencing and genetic engineering we showed that a mutation in a hypothetical gene containing 8-10 transmembrane domains causes tailocin high-persistence and genes of various glycosyl transferases cause incomplete and complete tailocin resistance. Importantly, of the several classes of mutations, only those causing complete tailocin resistance compromised host fitness. This result, combined with previous research, indicates that bacteria likely utilize persistence as a means to survive bacteriocin-mediated killing without suffering the costs associated with resistance. This research provides important insight into how bacteria can escape the trap of fitness trade-offs associated with gaining de novo tailocin resistance, and expands our understanding of how sensistive bacterial populations can persist in the presence of lethal competitors.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3