Rich polymorphic variants of alpha satellite 34mer higher order repeats in hg38 assembly of human chromosome Y

Author:

Vlahović Ines,Glunčić Matko,Paar Vladimir

Abstract

AbstractA challenging problem in human population genetics is related to the unique role of human Y chromosome, with properties that distinguish humans from other species. Centromeres in primate genomes are constituted of tandem repeats of ∼ 171 bp alpha satellite monomers, commonly organized into higher order repats (HORs). Because of gaps in DNA sequencing, HOR regions as genomic “black holes” have been understudied in spite of crucial importance. Only recently the sequencing of more complete satellite DNAs becomes accessible. In human Y chromosome the largest alpha satellite higher order repeat unit 34/36mer was found, but its polymorphic variants were not investigated. Here, we study the human Y chromosome centromeric genomic sequence from hg38 assembly using our novel ALPHAsub algorithm for simple identification of alpha satellite arrays and robust GRM algorithm for HOR identification in repeat sequences. We determine the monomer alignment scheme for alpha satellite HOR array based on canonical 34mer HOR, discovering a wealth of novel polymorphic variants which include the HOR-type monomer duplications, monomer deletions/insertions or rearrangements and non-HOR insertions.Author SummaryThe centromere is important for segregation of chromosomes during cell division in eukaryotes. Its destabilization results in chromosomal missegregation, aneuploidy, hallmarks of cancers and birth defects. In primate genomes centromeres contain tandem repeats of ∼ 171 bp alpha satellite DNA, commonly organized into higher order repeats (HORs). In this work, we used our bioinformatics algorithms to study the human Y chromosome centromeric genomic sequence and we discover a wealth of novel polymorphic variants which include the HOR-type monomer duplications, monomer deletions/insertions or rearrangements and non-HOR insertions. These results could help to understand the role of alpha satellites and alpha HOR structures in centromeric organization and function, in particular their role in creating a functional kinetochore that is crucial for chromosome segregation during cell division.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3