Mapping RNA-capsid interactions and RNA secondary structure within authentic virus particles using next-generation sequencing

Author:

Zhou YiyangORCID,Routh AndrewORCID

Abstract

AbstractTo characterize RNA-capsid binding sites genome-wide within mature RNA virus particles, we have developed a Next-Generation Sequencing (NGS) platform: Photo-Activatable Ribonucleoside Cross-Linking (PAR-CL). In PAR-CL, 4-thiouracil is incorporated into the encapsidated genomes of authentic virus particles and subsequently UV-crosslinked to adjacent capsid proteins. We demonstrate that PAR-CL can readily and reliably identify capsid binding sites in genomic viral RNA by detecting crosslink-specific uridine to cytidine transitions in NGS data. Using Flock House virus (FHV) as a model system, we identified highly consistent and significant PAR-CL signals across virus RNA genome indicating a clear tropism of the encapsidated RNA genome. Certain interaction sites correlate to previously identified FHV RNA motifs. We additionally performed dimethyl sulfate mutational profiling with sequencing (DMS-MaPseq) to generate a high-resolution profile of single-stranded genomic RNA inside viral particles. Combining PAR-CL and DMS-MaPseq reveals that the predominant RNA-capsid sites favor double-stranded RNA regions. We disrupted secondary structures associated with PAR-CL sites using synonymous mutations, resulting in varied effects to virus replication, propagation, and packaging. Certain mutations showed substantial deficiency in virus replication, suggesting these RNA-capsid sites are multifunctional. These provide further evidence to support that FHV packaging and replication are highly coordinated and inter-dependent events.ImportanceIcosahedral RNA viruses must package their genetic cargo into the restrictive and tight confines of the protected virions. High resolution structures of RNA viruses have been solved by Cryo-EM and crystallography, but the encapsidated RNA often eluded visualization due to the icosahedral averaging imposed during image reconstruction. Asymmetrical reconstructions of some icosahedral RNA virus particles have revealed that the encapsidated RNAs conform to specific structures, which may be related to programmed assembly pathway or an energy-minima for RNA folding during or after encapsidation. Despite these advances, determining whether encapsidated RNA genomes conform to a single structure and determining what regions of the viral RNA genome interact with the inner surface of the capsid shell remains challenging. Furthermore, it remains to be determined whether there exists a single RNA structure with conserved topology in RNA virus particles or an ensemble of genomic RNA structures. This is important as resolving these features will inform the elusive structures of the asymmetrically encapsidated genomic material and how virus particles are assembled.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3