Tau protein aggregation induces cellular senescence in the brain

Author:

Musi Nicolas,Valentine Joseph M.,Sickora Kathryn R.,Baeuerle Eric,Thompson Cody S.,Zapata Ashley,Shen Qiang,Orr Miranda E.

Abstract

Tau protein accumulation is the most common pathology among degenerative brain diseases, including Alzheimer’s disease (AD), progressive supranuclear palsy (PSP), traumatic brain injury (TBI) and over twenty others1. Tau-containing neurofibrillary tangle (NFT) accumulation is the closest correlate with cognitive decline and cell loss, yet the mechanisms mediating tau toxicity are poorly understood. NFT-containing neurons do not die, which suggests secondary mechanisms are driving toxicity2. We evaluated gene expression patterns of NFT-containing neurons microdissected from AD patient brains3 and found they develop an expression profile consistent with cellular senescence described in dividing cells. This complex stress response induces a near permanent cell cycle arrest, adaptations to maintain survival, cellular remodeling, and metabolic dysfunction4. Moreover, senescent cells induce chronic degeneration of surrounding tissue through the secretion of pro-inflammatory, pro-apoptotic molecules termed the senescence-associated secretory phenotype (SASP)5. Using transgenic mouse models of tau-associated pathogenesis we found that NFTs induced a senescence-like phenotype including DNA damage, karyomegaly, mitochondrial dysfunction and SASP. Cdkn2a transcript level, a hallmark measure of senescence, directly correlated with brain atrophy and NFT load. This relationship extended to postmortem brain tissue from humans with PSP to indicate a phenomenon common to tau toxicity. Tau transgenic mice with late stage pathology were treated with senolytics to remove senescent cells. Despite the advanced age and disease progression, senolytic treatment reduced total NFT burden, neuron loss and ventricular enlargement; and normalized cerebral blood flow to that of non-transgenic control mice. Collectively, these findings indicate that NFTs induce cellular senescence in the brain, which contributes to neurodegeneration and brain dysfunction. Moreover, given the prevalence of tau protein deposition among neurodegenerative diseases, these findings have broad implications for understanding, and potentially treating, dozens of brain diseases.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Translating the Biology of Aging into New Therapeutics for Alzheimer’s Disease: Senolytics;The Journal of Prevention of Alzheimer's Disease;2023

2. Cellular Senescence in Physiological and Pathological Processes;International Journal of Molecular Sciences;2022-11-01

3. Senescence and its Effect on Aging and Dementia;Journal of Regenerative Biology and Medicine;2022-07-05

4. Cellular senescence in age-related disorders;Translational Research;2020-12

5. Emerging Anti-Aging Strategies - Scientific Basis and Efficacy;Aging and disease;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3